Cómo curar 10.000 enfermedades

Cómo curar 10.000 enfermedades

Científicos logran corregir un defecto genómico mediante el uso de la tecnología CRISPR.

La enfermedad hereditaria -miocardiopatía hipertrófica- que los investigadores recientemente han curado en embriones humanos es relevante en sí misma: una cardiopatía congénita a menudo mortal que afecta a una de cada 500 personas. Pero lo esencial es que esta misma técnica de edición genómica, llamada CRISPR (Clustered regularly interspaced short palindromic repeats) , se puede utilizar también sobre cualquier otra de las 10.000 enfermedades causadas por la mutación de un solo gen.

En conjunto, estas enfermedades raras suponen una carga importante para los sistemas sanitarios. Pero cada una afecta a tan poca gente que resulta muy difícil encontrar financiación para investigar cada una por separado. Pero hay una cosa que todas tienen en común: se deben a la mutación de un gen en alguno de los padres y, por tanto, todas son susceptibles a una estrategia de reparación genética. Y, como demuestra el trabajo de hoy, ya disponemos de esa estrategia. 

Científicos corrigen una enfermedad hereditaria en embriones humanos

Científicos en EE UU, Corea del Sur y China han conseguido eliminar con éxito la miocardiopatía hipertrofia en embriones humanos. Pero esto también es una llamada de atención a toda la sociedad, pues la técnica permite al ser humano cambiar su destino biológico al introducir cambios en las células germinales —óvulos, espermatozoides y embriones— que se transmitirán para siempre de generación en generación.

Los científicos han usado CRISPR, una tecnología que permite modificar el genoma de cualquier ser vivo con mucha facilidad, para corregir la mutación en espermatozoides de un hombre portador de la enfermedad. Los científicos inyectaron al mismo tiempo los espermatozoides y una secuencia de CRISPR con la versión correcta del gen en óvulos donados por mujeres sanas. De los 58 embriones resultantes, 42 se desarrollaron sin la mutación que causa la enfermedad, una tasa de éxito del 72%. Por primera vez se ha logrado que un número sustancial de embriones sean totalmente viables, sin errores genéticos adicionales que podrían causar problemas de salud en un futuro bebé y en sus descendientes. Ninguno de los embriones estaba destinado a implantarse por lo que fueron destruidos en unos días tras la investigación.

En 2015, científicos chinos fueron los primeros en modificar embriones humanos con esta técnica. El trabajo más reciente, publicado este año, consiguió corregir un gen responsable de producir beta-talasemia. Ninguno de los tres trabajos consiguió curar todas las células del embrión, solo una parte, un problema conocido como mosaicismo, ni evitar mutaciones adicionales en el genoma, lo que desaconsejaba un posible uso terapéutico. Las investigaciones también originaron un debate internacional sobre los límites éticos que hay que imponer a esta tecnología y los cauces legales para aplicarla en los casos adecuados.

Por primera vez se ha logrado que un número sustancial de embriones sean totalmente viables

El avance “abre las puertas a que esta tecnología pudiera llevarse algun día a la clínica, obviamente con todas las precauciones necesarias y siempre si hubiera consenso en la sociedad y la ley así lo permitiera”, señala el bioquímico español Juan Carlos Izpisúa, investigador del Instituto Salk y coautor de la investigación.

El trabajo es fruto de la colaboración entre los mayores expertos mundiales en los diferentes campos implicados. La manipulación de los embriones se ha realizado en la Universidad de Salud y Ciencia de Oregón (EE UU) y ha sido liderada por Shoukhrat Mitalipov, quien ya consiguió la primera clonación terapéutica humana. Entre los firmantes también está el experto en edición genética Jin-Soo Kim, del Instituto de Ciencia Básica de Corea del Sur, así como varios autores del Instituto de Genómica de Pekín y el Laboratorio de Ingeniería de Diagnóstico Molecular Innovador de Shenzhen, que han analizado el genoma de los embriones para comprobar que no portaban errores.

La técnica aún no está lista para usarse en personas.

El próximo paso será mejorar su eficacia. El diagnóstico preimplantacional, que permite analizar el genoma de un embrión generado por fecundación in vitro antes de ser implantado en la madre, tiene una tasa de éxito del 50%. El uso de CRISPR eleva ahora esa tasa por encima del 70%, lo que permitiría, por ejemplo, desechar menos embriones en los procesos de reproducción asistida. Pero lo deseable es llegar al 90% o incluso el 100% de efectividad antes de pensar en aplicarla en humanos, explicó Mitalipov durante una conferencia de prensa.

Otro objetivo del equipo es corregir las mutaciones en los genes BRCA1 y 2, asociados a un riesgo muy alto de cáncer de mama y ovario, usando la misma técnica. En un paso más lejano, habría que realizar ensayos clínicos para trasplantar “los embriones a las madres y después seguir la salud de sus hijos”, explicó ayer Mitalipov. Este ensayo “requeriría acuerdos parlamentarios para cambiar las leyes de EE UU y muchos otros países. Queda aún un largo camino por delante”, advirtió.

Izpisúa vislumbra dos futuras aplicaciones de esta tecnología. La primera sería en “los precursores de los gametos masculinos y femeninos para parejas con síndromes recesivos muy severos. De esta manera, la corrección génica no se haría en el embrión, sino en las células precursoras de los gametos, y se mitigarían ciertos aspectos éticos y de seguridad”, explica. Con esta intervención se podrían corregir, por ejemplo, las mutaciones de cáncer de mama y ovario.

La segunda opción es usar el CRISPR directamente en el útero para corregir “enfermedades genéticas, como la trisomía que origina el síndrome de Down, en estados de gestación avanzados”, detalla. En estos casos el proceso no sería perfecto, pues no se corregirán todas las células del feto. Pero sí se podría dirigir el CRISPR a los órganos más afectados, por ejemplo cerebro y corazón, con la esperanza de cambiar suficientes células como para corregir el problema. “Aún nos falta bastante investigación, por ahora hablamos de corregir una sola mutación, con lo que esta tecnología no sería extensible a otros problemas”, advierte Izpisúa.

El trabajo deja también una importante sorpresa desde el punto de vista del conocimiento básico de la biología humana. Las secuencias de CRISPR contienen unas guías de ARN que buscan el punto exacto del genoma sobre el que hay que intervenir y unas enzimas que cortan el fragmento defectuoso. La secuencia también incluye una plantilla con la versión correcta del gen. Una vez cortado el genoma, los mecanismos naturales de reparación de la célula vuelven a pegar la secuencia genética añadiendo la versión proporcionada. La gran sorpresa es que los óvulos no usan la versión introducida por CRISPR, sino que duplica la propia copia correcta del gen que ya porta en su genoma.

Este fenómeno no se había observado antes ni en animales de laboratorio ni en las células somáticas humanas, las que dan lugar a todos los tejidos del cuerpo, lo que apunta a que las células reproductoras tienen un mecanismo único y robustísimo de autoprotección que no se lleva bien con adiciones externas. Desde un punto de vista evolutivo tiene todo el sentido, pues son las células encargadas de perpetuar la especie. Una de las primeras preguntas a responder es si esto impide corregir defectos genéticos cuando estos están en el óvulo y no en el espermatozoide.

Fuente: El País

Para conocer la investigación haga clic aquí